
A tutorial of ICD-10-CM diagnosis
codes identification in free-text
discharge note by word embedding and
convolutional neural network
Chin Lin, Yu-Sheng Lou
National Defense Medical Center, Taipei, Taiwan, ROC

Background
Disease coding is a method for extracting structured information from free-text medical narratives. This
structure disease information is useful in disease statistics and public health surveillance. The current
methods for collecting this structured information usually involve manual identification, but manual
identification of disease codes is laborious and costly. Moreover, time effectiveness is also important, so the
automated disease code classification algorithm is important in future.

Traditionally, the automated disease code classification algorithm is based on two steps: (1) natural
language processing (NLP) pipelines for feature engineering, and the popular method is to vectorize the
documents based on “bag of words” model; (2) supervised machine learning models, such as support
vector machine and random forests, are used to conduct classification task by these vectors. However,
three problems limit traditional method: (1) incomplete medical dictionary, (2) emerging disease, and (3)
curse of dimensionality.

We propose a NLP-free method for identifying ICD-10-CM diagnosis codes from free-text medical
narratives. This method is based on word embedding and convolutional neural network (CNN). Word
embedding is a feature-learning technique where vocabularies are mapped to vectors of real numbers, and
the word vectors for similar concepts are likewise close in terms of cosine similarity and Euclidean distance.
A free-text medical narratives can be converted into an N by M matrix through word embedding technology,
where N is number of words among a document and M is the length of word embedding vector. CNN utilize
layers with convolving filters that are applied to local features, and they can handle matrix input. Here, we
will demonstrate this algorithm for ICD-10-CM diagnosis codes identification in free-text discharge note. The

wikipedia database is used to train a word embedding model, and discharge notes will be converted to a
matrix for training CNN.

Diagram of processing nodes
In this tutorial, we propose a method combining word embedding and CNN for identifying the ICD-10 CM in
discharge note. The diagram of processing nodes with with tags of codes is shown as following. We need to
prepare a big text data (Wikipedia in our work), discharge notes, and their corresponding ICD-10 CM code
in the begin. Then there are three steps for training an automated classification algorithm as following: (1)
word embedding training, (2) converting free-text discharge note to a matrix, and (3) training a CNN. The
implementation in R languge is shown as following section.

Implementation in R languge
1. Word embedding training
Word2Vec is currently the most popular word embedding algorithms. First, we need to a big text data for
training . Wikipedia is an encyclopedia that is a written compendium of knowledge, and you can download
them from here. Here, we demonstrate a simple word2vec training process by a smaller text data.

We need to download wordVectors package. This package can be downloaded from github. The main
function for training word2vec models using an extended Jian Li’s word2vec code; reads and writes the
binary word2vec format so that you can import pre-trained models such as Google’s; and provides tools for

https://dumps.wikimedia.org/enwiki/
https://github.com/bmschmidt/wordVectors

reading only part of a model (rows or columns) so you can explore a model in memory-limited situations.

library(devtools)
install_github("bmschmidt/wordVectors")

Now we can use our smaller text data (download from here) for training our first word embedding model.
This data is a cookbook and we can use following code to download it.

download.file("http://archive.lib.msu.edu/dinfo/feedingamerica/cookbook_text.zip","
cookbooks.zip")
unzip("cookbooks.zip",exdir="cookbooks")

We have many txt documents in “cookbooks” directory. Let us process them for further training.

library(wordVectors)
library(stringi)

prep_word2vec("cookbooks","cookbooks.txt",lowercase=T)

Training word2vec model (about 10-15 mins).

word.model = train_word2vec("cookbooks.txt", output="cookbook_vectors.bin", threads
= 3, vectors = 100, window=12)

Now we can ckeck the similarity of words.

nearest_to(word.model, word.model[["fish"]])

fish salmon pickerel haddock trout
3.330669e-16 2.056561e-01 2.097011e-01 2.280171e-01 2.289291e-01
smelts pike flounders carp turbot
2.384494e-01 2.422434e-01 2.458153e-01 2.472751e-01 2.546006e-01

Is it amazing? Of crouse, you can use your data for training word embedding model. The completed training
model by wikipedia can be download from here, and we will use this embedding table in next step.

2. Converting free-text discharge note to a matrix
After word embedding model training finish, we need to build a pipeline for converting free-text discharge
note to a matrix. Here, we only use an discharge note for example. You can apply this process to your data.

http://archive.lib.msu.edu/dinfo/feedingamerica/cookbook_text.zip
https://drive.google.com/open?id=0B_4M9nMjDcz5bF9kY0syRld4QXc

#Example discharge note
example = "Adenocarcinoma of stomach with peritoneal carcinomatosis and massive asc
ite, stage IV under bidirection chemotherapy (neoadjuvant intraperitoneal-systemic
chemotherapy) with intraperitoneal paclitaxel 120mg (20151126, 20151201) and system
ic with Oxalip (20151127) and oral XELOX."

#Text process
text = tolower(example)
text = gsub("\n", "@@@@@", text, fixed = TRUE)
text = gsub("\r", "@@@@@", text, fixed = TRUE)
text = gsub("[:,;-]", "@", text)
text = gsub("(", "@", text, fixed = TRUE)
text = gsub(")", "@", text, fixed = TRUE)
text = gsub("/", "@", text, fixed = TRUE)
text = strsplit(text, split = ".", fixed = TRUE)[[1]]
text = paste(text, collapse = "@@@@@")
text = strsplit(text, split = "@", fixed = TRUE)[[1]]

#Show result
text

[1] "adenocarcinoma" "of" "stomach"
[4] "with" "peritoneal" "carcinomatosis"
[7] "and" "massive" "ascite"
[10] "" "stage" "iv"
[13] "under" "bidirection" "chemotherapy"
[16] "" "neoadjuvant" "intraperitoneal"
[19] "systemic" "chemotherapy" ""
[22] "with" "intraperitoneal" "paclitaxel"
[25] "120mg" "" "20151126"
[28] "" "20151201" ""
[31] "and" "systemic" "with"
[34] "oxalip" "" "20151127"
[37] "" "and" "oral"
[40] "xelox"

We can find the example discharge note has been converted to a word vector. Now we need to use the
completed training word embedding model (download from here) for converting word vector to a matrix.

https://drive.google.com/open?id=0B_4M9nMjDcz5bF9kY0syRld4QXc

#Read word embedding model
library(data.table)
library(magrittr)
library(dplyr)
library(plyr)

word.data = fread("wikipedia word2vec.txt", header = FALSE, showProgress = FALSE)
words.ref = word.data %>% select(V1) %>% setDF %>% .[,1] %>% as.character
words.matrix = word.data %>% select(-V1) %>% setDF %>% as.matrix

#Alignment
TEXT.ARRAY = matrix(0, nrow = length(text), ncol = 50)
for (i in 1:length(text)) {
 if (text[i]!="") {
 pos = which(words.ref == text[i])
 if (length(pos)==1) {
 TEXT.ARRAY[i,] = words.matrix[pos,]
 }
 }
}

Let us visualize this matrix!

library(imager)
img = TEXT.ARRAY
img[img>2] = 2
img[img<-2] = -2
plot(as.cimg(t(img)))

3. Training a CNN
Let us download 5,000 labeled discharge note after converting process from here. This data include 2
objects: ARRAY and LABEL. Where ARRAY is a 4-D array representing 5,000 discharge notes, and
LABEL recorded which discharge note mentions neoplasms(C00-D49). There are 1,640 neoplasms
discharge notes. Here we can divide it into a training set and testing set.

All matrices have been converted to 100 rows, and additional part have been filled in 0. This meaning
the all of our example discharge notes are less than 100 words.

load("ICD10.RData")

Train.X.array = ARRAY[,,1:3000]
dim(Train.X.array) = c(100, 50, 1, 3000)
Train.Y = LABEL[1:3000]

Test.X.array = ARRAY[,,3001:5000]
dim(Test.X.array) = c(100, 50, 1, 2000)
Test.Y = LABEL[3001:5000]

We need to download MxNet package. MXNet for R is available for both CPUs and GPUs. For Windows
users, MXNet provides prebuilt binary packages. You can install the package directly in the R console (CPU
version).

cran <- getOption("repos")
cran["dmlc"] <- "https://s3-us-west-2.amazonaws.com/apache-mxnet/R/CRAN/"
options(repos = cran)
install.packages("mxnet")

Now let us refer this to design our CNN.

https://drive.google.com/open?id=0B_4M9nMjDcz5aHAzTTNKSXlCOHM

library(mxnet)

get_symbol_textcnn <- function(num_outcome = 1, filter_sizes = 1:5, num_filter = c
(40, 30, 15, 10, 5), Seq.length = 100, word.dimation = 50, dropout = 0.5) {

 data <- mx.symbol.Variable('data')

 concat_lst <- NULL

 for (i in 1:length(filter_sizes)) {
 convi <- mx.symbol.Convolution(data = data, kernel = c(filter_sizes[i], word.d
imation), pad = c(filter_sizes[i]-1, 0), num_filter = num_filter[i], name = paste0
('conv', i))
 relui <- mx.symbol.Activation(data = convi, act_type = "relu", name = paste0('
relu', i))
 pooli <- mx.symbol.Pooling(data = relui, pool_type = "max", kernel = c(Seq.len
gth + filter_sizes[i] - 1, 1), stride = c(1, 1), name = paste0('pool', i))
 concat_lst = append(concat_lst, pooli)
 }

 concat_lst$num.args = length(filter_sizes)

 h_pool = mxnet:::mx.varg.symbol.Concat(concat_lst)

 # dropout layer

 if (dropout > 0) {
 h_drop = mx.symbol.Dropout(data = h_pool, p = dropout)
 } else {
 h_drop = h_pool
 }

 # fully connected layer

 cls_weight = mx.symbol.Variable('cls_weight')
 cls_bias = mx.symbol.Variable('cls_bias')

 fc = mx.symbol.FullyConnected(data = h_drop, weight = cls_weight, bias = cls_bia
s, num_hidden = num_outcome)
 lr = mx.symbol.LogisticRegressionOutput(fc, name='lr')

 return(lr)
}

The cross-entropy is used for loss function. We need to define this function as following.

my.eval.metric.CE <- mx.metric.custom(
 name = "Cross-Entropy (CE)",
 function(real, pred) {
 real1 = as.numeric(real)
 pred1 = as.numeric(pred)
 pred1[pred1 <= 1e-6] = 1e-6
 pred1[pred1 >= 1 - 1e-6] = 1 - 1e-6
 return(-mean(real1 * log(pred1) + (1 - real1) * log(1 - pred1), na.rm = TRUE))
 }
)

Now we are finally able to train our first model.

n.cpu <- 4
device.cpu <- lapply(0:(n.cpu-1), function(i) {mx.cpu(i)})

mx.set.seed(0)

cnn.model = mx.model.FeedForward.create(get_symbol_textcnn(),
 X = Train.X.array, y = Train.Y,
 ctx = device.cpu, num.round = 20,
 array.batch.size = 100, learning.rate = 0.
05,
 momentum = 0.9, wd = 0.00001,
 eval.metric = my.eval.metric.CE)

Auto-select kvstore type = local_update_cpu
Start training with 4 devices
[1] Train-Cross-Entropy (CE)=0.646637871900186
[2] Train-Cross-Entropy (CE)=0.557748752890724
[3] Train-Cross-Entropy (CE)=0.371177842529053
[4] Train-Cross-Entropy (CE)=0.302762303566566
[5] Train-Cross-Entropy (CE)=0.263237404758913
[6] Train-Cross-Entropy (CE)=0.250432130185339
[7] Train-Cross-Entropy (CE)=0.234207048904955
[8] Train-Cross-Entropy (CE)=0.237682273764665
[9] Train-Cross-Entropy (CE)=0.201103999045526
[10] Train-Cross-Entropy (CE)=0.205322830078845
[11] Train-Cross-Entropy (CE)=0.194253797400228
[12] Train-Cross-Entropy (CE)=0.170224793233577
[13] Train-Cross-Entropy (CE)=0.163891660067964
[14] Train-Cross-Entropy (CE)=0.181323002454327
[15] Train-Cross-Entropy (CE)=0.182293547978298
[16] Train-Cross-Entropy (CE)=0.158645556911646
[17] Train-Cross-Entropy (CE)=0.156562428821528
[18] Train-Cross-Entropy (CE)=0.141004996980063
[19] Train-Cross-Entropy (CE)=0.134122406101353
[20] Train-Cross-Entropy (CE)=0.13564977252312

Let us use this model to predict testing set, and use receiver operating characteristic (ROC) curve to assess
our model performance.

library(pROC)
pred.y = predict(cnn.model, Test.X.array)
ROC.test = roc(response = Test.Y, predictor = as.numeric(pred.y))
print(auc(ROC.test))

Area under the curve: 0.9808

It is amazing that area under the curve is more than 0.98 using only 3,000 sample to train our model. We
can use following code to save our model.

mx.model.save(cnn.model, "Neoplasms CNN", iteration = 1)

If you want to use our pre-training Neoplasms CNN model, you can download from here. And now we can
use this model to predict testing data again.

pre_training.cnn = mx.model.load("Neoplasms CNN", iteration = 0)
pred.y = predict(pre_training.cnn, Test.X.array)
ROC.test = roc(response = Test.Y, predictor = as.numeric(pred.y))
print(auc(ROC.test))

Area under the curve: 0.9952

The area under the curve of completed model in testing set is more than 0.995! Now it’s your turn!

https://drive.google.com/open?id=0B_4M9nMjDcz5VS0wS3BtMWw5UUk

	A tutorial of ICD-10-CM diagnosis codes identification in free-text discharge note by word embedding and convolutional neural network
	Chin Lin, Yu-Sheng Lou
	National Defense Medical Center, Taipei, Taiwan, ROC

	Background
	Diagram of processing nodes
	Implementation in R languge
	1. Word embedding training
	2. Converting free-text discharge note to a matrix
	3. Training a CNN

